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Andrey Beresnyak, T-2 MHD is a simple one-fluid description of a conductive media. Most of the ordinary matter in the universe is 
ionized–that is, in a state of plasma, due to the presence of ionizing radiation such as ultraviolet, X-rays, 
and cosmic rays. Turbulent plasma is known to generate its own magnetic fields and most of the observed 
astrophysical plasma, in such objects as ISM, ICM, accretion disks, and molecular clouds, is magnetized 
to a degree such that the magnetic field is dynamically important. MHD can also be helpful in some plasma 
experiments that are either large-scale or feature large density, so that the mean-free path of the particle is 
much smaller than the scale of the problem.

Studying magnetohydrodynamics (MHD) turbulence is interesting for 
two reasons. First, in MHD, just as in hydrodynamics, turbulence 

changes the overall properties of the flow by changing transport 
properties, such as effective viscosity or thermal conduction. Second, the 
magnetic perturbations that are the essential part of the MHD 
turbulence cascade affect the dynamics of charged particles, most 
notably cosmic rays. Indeed, in many of the astrophysical environments 
that we know, cosmic rays are dynamically important. Efficient 
acceleration of cosmic rays in shock require the back-reaction of cosmic 
rays to turbulence. Also, MHD turbulence is a well-observed 
phenomenon. Magnetic, velocity, and density perturbations covering a 
huge range of scales have been observed in the interstellar medium 
(ISM), intracluster medium (ICM), and solar wind.

A big difference between hydrodynamics and MHD is that ideal MHD 
equations have three ideal invariants: energy, cross-helicity, and 

magnetic helicity. While magnetic 
helicity is often important on larger 
scales, its influence on the inertial 
range of turbulence can be largely 
ignored. Cross-helicity is different. 
The conservation of energy and 
cross-helicity could be reformulated 
as the conservation of two Elsasser 
energies (w±)2, where Elsasser 
variables are defined as: 
w+ = v + B / √4pp	   and    
w– = v – B / √4pp 
 

Balanced and Imbalanced Magnetohydrodynamics Turbulence

Perturbations of w+ propagate against local mean magnetic field, 
whereas perturbations of w– propagate along the field. We often say that 
turbulence is balanced when the flow of w+ statistically balances the 
flow of w–, which corresponds to the limit of zero cross-helicity. In 
nature, however, MHD turbulence is very often imbalanced, resulting 
from the presence of a strong localized source of perturbations, for 
example, the central engine of active galactic nuclei. In our own solar 
system, solar wind turbulence is measured to be imbalanced, because 
most perturbations are emitted from the Sun.

Imbalanced MHD turbulence has been largely unexplored until recently. 
Similar to the standard phenomenology of hydrodynamic turbulence, 
MHD has the Goldreich-Sridhar model [1]. This model, however, only 
treats the balanced case and is conceptually incomplete; because 
turbulence is a stochastic phenomenon, an average zero cross-helicity 
does not preclude fluctuations of this quantity in the turbulent volume. 
In this situation, studying imbalanced turbulence with direct numerical 
simulations provides valuable hints on imbalanced dynamics.

We used the highly-parallelizable, very precise MHD pseudospectral 
code that was described in great detail in our earlier publications [4-5]. 
We performed the highest resolution MHD simulations to date—in the 
imbalanced case, resolution was up to 15363, and in the balanced case, 
as large as 30722 ×1024. The balanced runs were evolved, typically for 
10 Alfvenic times, and the imbalanced runs were evolved for 10–40. The 
energy injection rates were kept constant. Figure 1 features the slice 
from a 3D simulation of imbalanced MHD turbulence, which 
 

Fig. 1. A slice through a 3D imbalanced 
MHD simulation showing the structure 
of Elsasser fields. Right: dominant 
field, left: sub-dominant field. Magnetic 
field is directed horizontally.



www.lanl.gov/orgs/adtsc/publications.php 39

ASTROPHYSICS AND COSMOLOGY

[1] Goldreich, P., Sridhar, S., Astrophys J 438, 763 (1995).
[2] Lithwick, Y., et al., Astrophys J 655, 269 (2007).
[3] Beresnyak, A., Lazarian, A., Astrophys J 678, 961 (2008).
[4] Beresnyak, A., Lazarian, A., Astrophys J 702, 460 (2009).
[5] Beresnyak, A., Lazarian, A., Astrophys J 702, 1190 (2009).

Funding Acknowledgments
LANL Director’s Fellowship (LDRD)

For more information contact Andrey Beresnyak at beresnyak@lanl.gov.

demonstrated that the structure of Elsasser 
fields is different due to imbalance.

One of the most robust quantities in 
numerical simulations of MHD turbulence is 
the energy cascading rate or dissipation 
rate. In hydrodynamic turbulence, the 
dissipation rate and the spectrum of velocity 
are connected by the well-known 
Kolmogorov constant:  
E(k) = CKe

2/3k-5/3. The important fact that 
strong hydrodynamic turbulence dissipates in one dynamic time scale l/v 
is reflected by CK being close to unity (~1.6). In MHD turbulence, 
however, there are two energy cascades (or “Elsasser cascades”) and 

there are two dissipation rates, e+ and e–. The 
question of how these rates are related to the 
velocity-like Elsasser amplitudes w+  and w– is one 
of the central questions of imbalanced MHD 
turbulence.

The Goldreich-Sridhar model predicts that in the 
balanced case the cascading is strong and each 
wave is cascaded by the shear rate of the opposite 
wave, that is, e+ = (w+

l)2w–
l / l,e– = (w–

l)2w+
l /l . It 

is similar to the Kolmogorov cascade with w’s 
replacing v. If this model still works for the 

imbalanced case, we can obtain (w+)2 / (w–)2 = (e+ /e–)2, which was 
proposed in [2]. Figure 2 shows the relation between the ratio of 
energies and ratio of fluxes from direct numerical simulations. As we 
see, most points lie above the prediction of [2], which is consistent with 
our model’s [3] prediction. In [3] we argued that the classical critical 
balance of [1] becomes inconsistent in the imbalanced case and a 
different relation should be used–this was further confirmed by direct 
measurements of anisotropy [4], which showed different anisotropies for   
w+ and w–, while [2] was predicting the same anisotropy. Another model, 
based on “dynamic alignment” was predicting a viscous-type dissipation 
law (w+)2 / (w–)2 = e+ /e–  and is completely inconsistent with 
numerics.

Another challenging problem is to measure the Kolmogorov constant of 
MHD turbulence. Earlier simulations showed a spectral slope, which was 
shallower that Kolmogorov’s -5/3. Some models, based on “dynamic 
alignment” claimed that the asymptotic slope is not -5/3, but rather -3/2. 
As we discovered, shallower slopes in previous simulations were 
artifacts of a low resolution. We also discovered that MHD turbulence is 
less local that hydrodynamic turbulence [5]–a higher resolution is 
therefore necessary. Figure 3 shows a measurement of the Kolmogorov 
constant in a purely Alfvenic turbulence (also called reduced MHD). 
From this measurement we can derive a Kolmogorov constant for full 
MHD, taking the amount of slow mode between 1 and 1.3 of Alfvenic 
mode. The final value for the Kolmogorov constant for MHD is, therefore, 
CK = 4.1±0.3. Remarkably, it is much higher than the hydrodynamic 
value of 1.6.

Fig. 2. The energy imbalance versus 
dissipation rate imbalance. Error bars 
are mostly due to fluctuations in time.

Fig. 3. The dimensionless compensated 
spectra in balanced simulations plotted 
versus dimensionless kη where η is 
a Kolmogorov scale. We reproduce 
the asymptotic -5/3 slope of MHD 
turbulence. The Kolmogorov constant 
for this purely Alfvenic turbulence is 
CKA ≈3.2, which is much higher than for 
hydroturbulence. This fact was missed 
in earlier lower resolution simulations. 
Also, higher CK means less efficient 
energy transfer, which is consistent with 
our picture of diffuse locality [5]. This is 
a first measurement of the Kolmogorov 
constant in MHD turbulence.


